A stable and optimally convergent LaTIn-Cut Finite Element Method for multiple unilateral contact problems

نویسندگان

  • Susanne Claus
  • Pierre Kerfriden
چکیده

In this paper, we propose a novel unfitted finite element method for the simulation of multiple body contact. The computational mesh is generated independently of the geometry of the interacting solids, which can be arbitrarily complex. The key novelty of the approach is the combination of elements of the CutFEM technology, namely the enrichment of the solution field via the definition of overlapping fictitious domains with a dedicated penalty-type regularisation of discrete operators, and the LaTIn hybrid-mixed formulation of complex interface conditions. Furthermore, the novel P1-P1 discretisation scheme that we propose for the unfitted LaTIn solver is shown to be stable, robust and optimally convergent with mesh refinement. Finally, the paper introduces a high-performance 3D level-set/CutFEM framework for the versatile and robust solution of contact problems involving multiple bodies of complex geometries, with more than two bodies interacting at a single point. keywords: unilateral contact, LaTIn, nonconforming finite element, CutFEM, ghost penalty, multiple level sets, composite materials

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PENALTY METHOD FOR UNILATERAL CONTACT PROBLEM WITH COULOMB’S FRICTION FOR LOCKING MATERIAL

In this work, we study a unilateral contact problem with non local friction of Coulombbetween a locking material and a rigid foundation. In the first step , we present the mathematicalmodel for a static process, we establish the variational formulation in the form of a variationalinequality and we prove the existence and uniqueness of the solution. In the second step, usingthe penalty method we...

متن کامل

An optimally convergent discontinuous-Galerkin-based extended finite element method for fracture mechanics

The extended finite element method (XFEM) enables the representation of cracks in arbitrary locations of a mesh. We introduce here a variant of the XFEM rendering an optimally convergent scheme. Its distinguishing features are: a) the introduction of singular asymptotic crack tip fields with support on only a small region around the crack tip, the enrichment region, b) only one and two enrichme...

متن کامل

A Sign Preserving Mixed Finite Element Approximation for Contact Problems

This paper is concerned with the frictionless unilateral contact problem (i.e., a Signorini problem with the elasticity operator). We consider a mixed finite element method in which the unknowns are the displacement field and the contact pressure. The particularity of the method is that it furnishes a normal displacement field and a contact pressure satisfying the sign conditions of the continu...

متن کامل

Numerical Modeling of a Dual Variational Inequality of Unilateral Contact Problems Using the Mixed Finite Element Method

We study the dual mixed finite element approximation of unilateral contact problems. Based on the dual mixed variational formulation with three unknowns (stress, displacement and the displacement on the contact boundary), the a priori error estimates have been established for both conforming and nonconforming finite element approximations. A Uzawa type iterative algorithm is developed to solve ...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.01977  شماره 

صفحات  -

تاریخ انتشار 2017